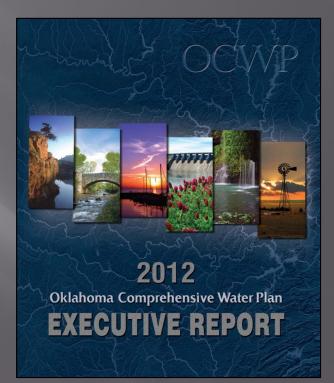

GROUNDWATER MONITORING AND ASSESSMENT PROGRAM


Mark Belden Water Quality Programs Division

Oklahoma Clean Lakes and Watersheds Annual Conference – April 2, 2014

Groundwater Monitoring Initiative

- Made possible through legislative adoption of Oklahoma's Comprehensive Water Plan Update (OCWP) and its High Priority Recommendations (2012).
- Second key ingredient: obtaining a secure funding source
 - OK Legislature funded this new initiative
 - Also restored funding levels for the state's "BUMP" program
 - Added an additional 1.5M/year

OCWP Recommendations

PRIMARY RECOMMENDATIONS

- Water project & infrastructure funding (81 B)
- Regional planning groups
- Surplus/Excess water
- Instream flows (Bio-Rec)
- State/Tribal water consultation & resolution
- Water conservation
- Water supply reliability
- Monitoring

 Integration of SW/GW quality monitoring programs.

MONITORING

RECOMMENDATIONS

- Stable funding to support.
 - Gaging
 - BUMP
 - Non-Point Source
 - Point Source (agriculture, mining & oil and gas)
- Creation of an ambient groundwater quality program.
- Fully implement state-wide program for the collection of biological data.

Data for Decision Making

Contrasted with "BUMP", the OCWP cited the lack of an ambient groundwater monitoring program as a weakness in Oklahoma's ability to evaluate future groundwater supplies for beneficial use.

Decisions don't *require* data But GOOD decisions do!

Program Development

- 7-1-12 Effective date of the new program
- Program development (12 months in the making)
 - Monitoring proposal/Stake holders/Public Meeting
 - Personnel (hiring/training)
 - QA/Laboratory/Data Base
 - Core data elements and associated metadata
 - Well selection/landowner contacts/site recons
 - Implementation of GMAP: Year 1 Group "A" Aquifers (7-1-13)

Monitoring Objectives

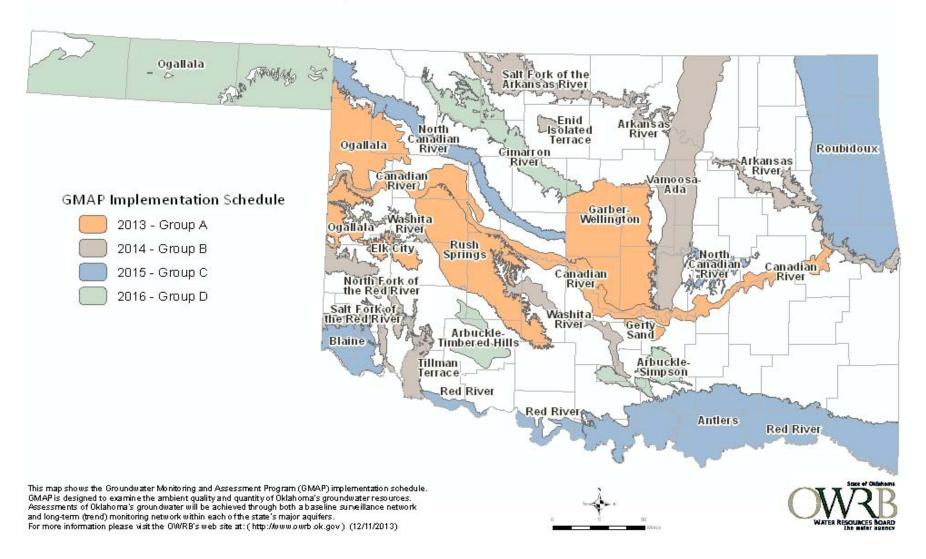
 Obtain data on current conditions of groundwater levels and quality (baseline)

Describe the spatial distribution, occurrence and magnitude..... over different "seasons"

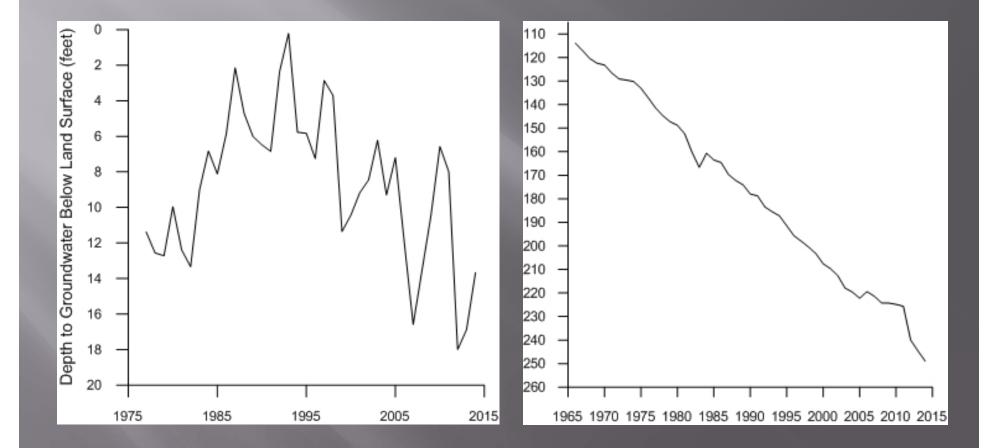
 Collect long-term data to observe changing conditions over time (trends)

How will GMAP Data Advance the Cause of Aquifer Resource Management?

Groundwater Level

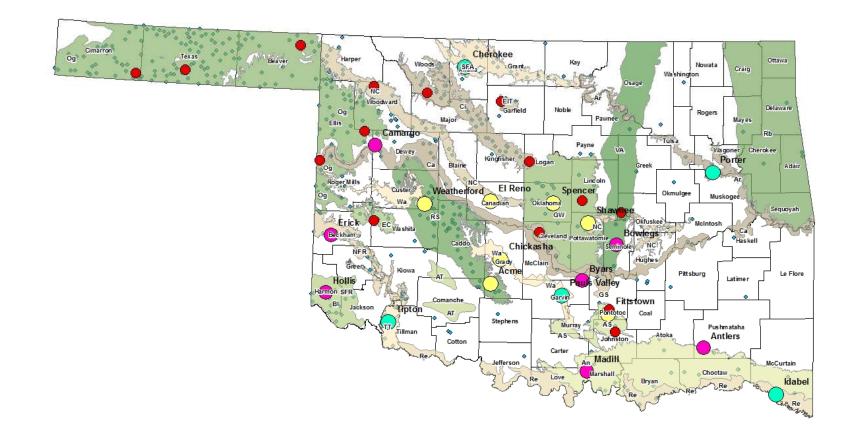

- Availability
- Vulnerability
- Hydrologic boundaries
- Drought or seasonal effects
- Support technical water allocation studies

Groundwater Quality


- Beneficial uses
- Water quality standards
- Aquifer classification
- Private wells
- Baseline to measure future change
- PWS/industrial expansion

Groundwater Monitoring and Assessment Program (GMAP)

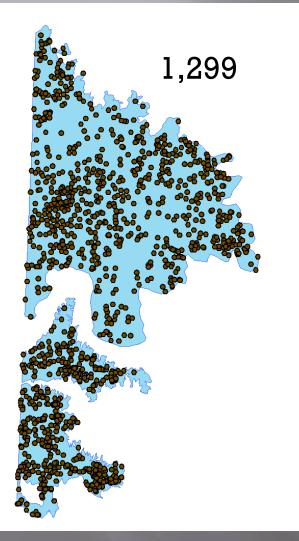
Implementation Schedule

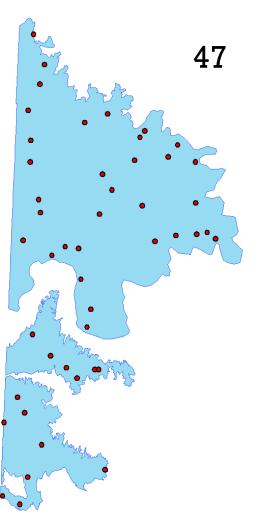

Time Series Data

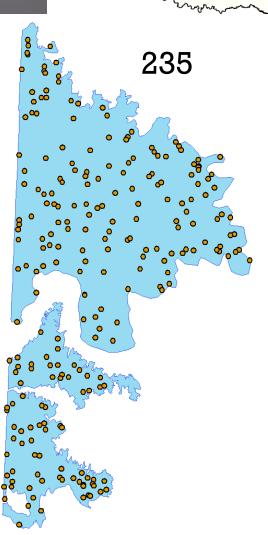
Groundwater Level Changes

Aquifer	Wells	2012-2013	2013-2014	2009-2014	2004-2014	POR(?2014)
		(1 year)	(1 year)	(5 year)	(10 year)	
Arkansas River	6	-1.84	0.43	-2.13	-5.91	-4.19
North Can.	29	-2.11	0.73	-4.47	-2.34	-0.12
Cimarron River	34	-1.92	1.66	-5.72	-3.43	-1.63
Canadian River	10- <mark>34</mark>	1.20	3.58	-1.97	-2.74	-2.87
N Fork Red R.	32	-1.80	-1.32	-6.20	-5.57	-2.20
Salt Fork Ark.	17	-1.33	0.04	-6.70		-6.78
Washita River	6	-3.19	0.75	-3.51	-3.21	-4.54
Enid Terrace	9	-1.71	-0.23	-4.24		0.08
Antlers	13	-1.61	0.06	-1.32	-2.11	-4.04
Arbuckle	11	-8.71	7.1	-21.74	1.71	-10.38
Blaine	15	-6.36	-5.44	-20.99	-17.71	-24.48
Elk City	6- <mark>23</mark>	-1.33	-1.03			-4.54
GWellington	15- <mark>45</mark>	-3.45	1.83	-5.19	-4.2	-5.21
Rush Springs	59- <mark>82</mark>	-1.59	-1.02	-5.67	-3.34	1.26
OG-NW	33- <mark>51</mark>	-0.45	-0.52	-3.01	-2.32	2.51
OG-Panhandle	112	-2.11	-1.86	-8.71	-10.41	-23.57

Continuous/Real Time Recorder Sites

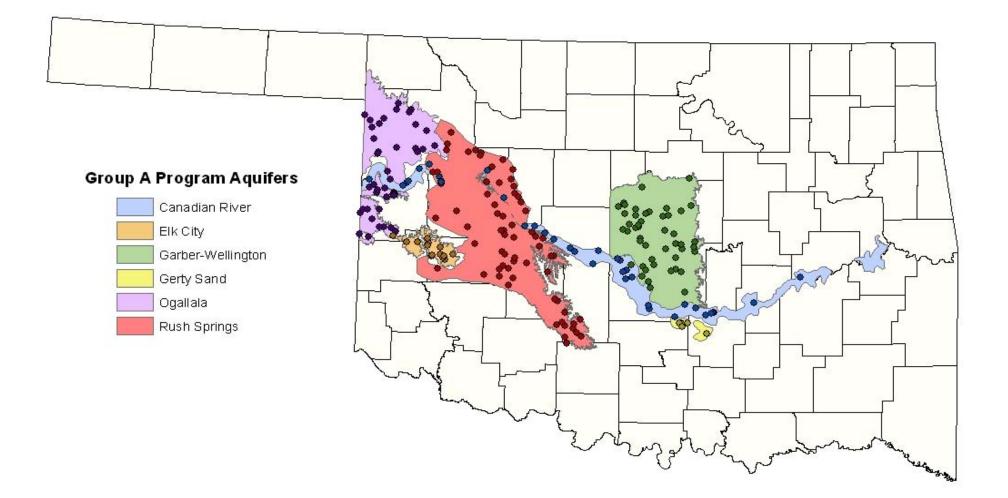

GMAP Network Design


- Number of wells
- Density of wells
- Aquifer type, lithology, thickness
- Depth to water, stratification of aquifer
- Surface water features
- Land and water use
- Groundwater recharge/discharge areas
- Holistic versus targeted monitoring

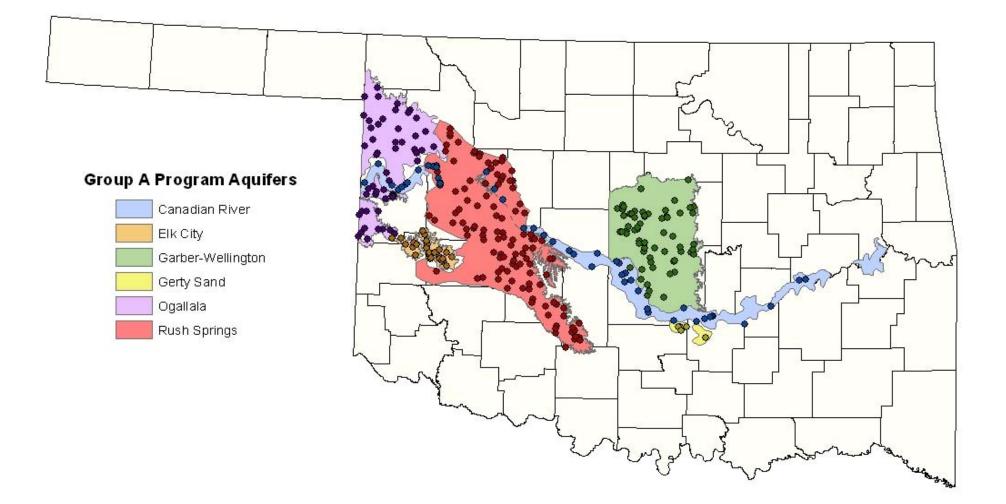

Sampling Sites

- Stratified by aquifer
 - Areal extent of aquifers determined well design numbers
- Selection probabilities weighted based on well density
- Random but spatially balanced population of wells (Olsen, 2003, "Spatially-Balanced Survey Design for Groundwater using Existing Wells")
- Make statistically valid assumptions about population by measuring the characteristics of a representative subset

Ogallala Northwest



All eligible wells


Sampling sites

Alternate sites

Final Water Quality Network

Final Water Level Network

Network When Fully Implemented

Long-term monitoring of Oklahoma's Major Aquifers

Water Quantity

- 1,068 wells in the main
 Baseline Network
- 530 of those wells in the long-term Trend Network

Water Quality

- 700 wells in the mainBaseline Network
- 140 of those wells in the long-term Trend Network

Metadata

- Geographic location/altitude
- Well type
- Well depth/screened interval
- Land use
- Weather conditions
- DTW pre/post sampling
- Purge or sample stabilization parameters
- Field chemistry

Laboratory Analytical Parameters

• Common ions (Na, Ca, Mg, K, HCO_3 , SO_4 , Cl)

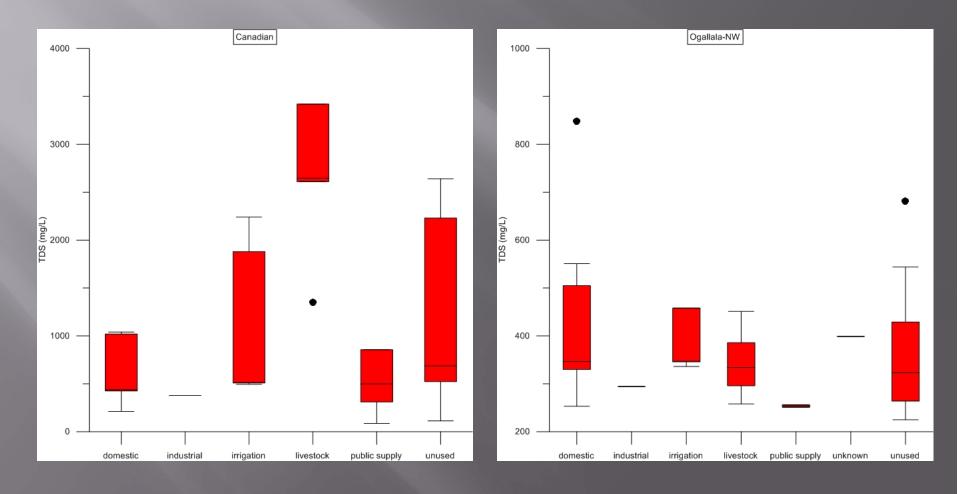
• Nutrients (NH₃, NO₃, P)

Trace metals (Cr, Mn, U among others)

Trace elements (Br, F, Se among others)

• TDS

Well Types Used in the Program


Most well types are permissible

- Meets minimum construction standards
- Geology/lithology
- Well depth and screen length and placement
- Wells excluded from the program:
 - Point source monitoring wells
 - Potential (non-regulated) pollution source
- Majority of network
 - Irrigation, public water supply, domestic, stock, industrial, oil and gas exploration

BOX Plots of TDS by Well Type

CANR – most mineralized

OG-NW - least mineralized

Group A Summary Results

- 203 environmental samples
- 399 water level measurements
- 110 well tri-annual (seasonal) water level in place
- 15 Continuous water level recorders installed
- Higher TDS areas related to CaSO₄ & NaCl water types;
 >gypsum, anhydrite and halite bearing Permian bedrock
- Locally high nitrates found in Rush Springs and Ogallala-NW aquifers
- Trace metal occurrence in excess of EPA Safe Drinking Water limits occurred in 5 percent of the samples (As-7, U-3, Pb-1)
- Most mineralized aquifer CANR; Least OGLA-NW

Mark Belden, Groundwater Monitoring Coordinator, Wate Quality Programs Division Water Resources Board 405.530.8800 mark.belden@owrb.ok.gov

State of Oklahoma

e water agency

ESCHROES BO

WATE